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Density-functional study of the nematic-isotropic interface of hard spherocylinders
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The Somoza-Tarazona density-functional theory is applied to the isotropic-nematic interface of hard sphero-
cylinders with length (L)-to-diameter (D) ratios in the rangeL/D55 –20. Properties such as the density and
orientational order-parameter profiles and the variation of interfacial tension with bulk nematic tilt angle agree
qualitatively with results of previous studies at larger values ofL/D using both computer simulation and the
Onsager second-virial approximation. The minimum interfacial tension is obtained at a tilt angle of 90°. For
values ofL/D;5, it is found that the Onsager approximation predicts a spurious minimum in the interfacial
tension at small tilt angles.
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I. INTRODUCTION

Understanding surface effects in liquid crystals continu
to be a topic of both fundamental and technological imp
tance. Recently there has been a resurgence of interest i
interfacial behavior of the most elementary model for liqu
crystals, namely, a fluid of rigid hard rods. Using bo
computer-simulation and density-functional theory, rec
works have examined the static properties of the interf
between coexisting isotropic and nematic phases@1–5# as
well as interfaces of the fluid near a single hard wall
confined between two parallel hard walls@6,7#. The latter
two works have also studied associated wetting and capil
condensation effects. So far, the density-functional theo
used in these studies have been based on the Ons
second-virial approximation, in some works@6# further sim-
plified by use of Zwanzig’s@8# discrete-orientation model
The Onsager approximation becomes exact for the beha
of the isotropic-nematic phase transition when the length
diameter (L/D) ratio of the hard rods tends to infinity, sinc
in that limit the coexisting volume fractions tend to zero@9#.
However, for finiteL/D as well as in the treatment of othe
possible types of hard-rod phase transitions such as
nematic-smectic-A transition, for which the transition value
of the volume fraction are ofO(1) even whenL/D→`, the
Onsager approximation is no longer exact. Extensions of
Onsager approach should then be considered.

In this paper we apply the Somoza-Tarazona~ST! @10#
density-functional theory. This theory combines
translation-orientation ‘‘decoupling’’ approximation, orig
nally introduced by Parsons@11# and Lee@12# to extend the
Onsager theory to uniform phases of arbitrary density, w
an approximate ‘‘weighted-density’’ functional method a
propriate for a nonuniform rigid-rod fluid. Recently we d
scribed an efficient numerical scheme for solving the
theory and used it to determine the bulk phase diagram
1063-651X/2002/66~2!/021708~7!/$20.00 66 0217
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freely rotating hard spherocylinders@13#. The hard-
spherocylinder model is considered here rather than o
possible models such as hard ellipsoids, due to the abs
of smectic phases in the latter. In the present work, we
tend our analysis of the ST theory to the isotropic-nema
interface. As in previous work based on the Onsager appr
mation, we examine the properties of the density and ori
tational order-parameter profiles at the interface, includ
effects of interfacial biaxiality. We also study anchoring b
havior indicated by the variation of the interfacial tension
a function of the tilt angle between the nematic director a
the interface normal. In agreement with other work, we fi
that the minimum isotropic-nematic interfacial tension is o
tained when the director is parallel to the interface. It is a
shown, however, that the Onsager approximation produ
spurious minima in the interfacial tension at oblique t
angles for small elongationsL/D;5, a range not considere
in previous work but relevant to many real liquid crysta
@14#. For largerL/D, the results of the ST theory and On
sager theory are in good agreement, apart from difference
the predictions of the densities of the coexisting bulk phas

This work can be considered a preliminary step towa
studying a variety of inhomogeneous structures of the ha
spherocylinder fluid, such as interfaces between other ty
of coexisting phases~e.g., nematic smectic! as well as asso-
ciated wetting and adsorption phenomena, which will
tackled in future work. In the following section the ST theo
is reviewed. Several technical hurdles faced in implement
the theory are discussed in Sec. III. The results are prese
in Sec. IV, while a summary and conclusions are containe
Sec. V.

II. MODEL FOR A PLANAR NEMATIC-ISOTROPIC
INTERFACE

The molecular model consists of hard spherocylinders
cylinder lengthL and diameterD. The Helmholtz free-energy
©2002 The American Physical Society08-1
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functional of a fluid of such molecules is expressed by
sum of the ideal-gas termF ID and an excess termFex due to
interactions. In the Somoza-Tarazona approximation@10#,
the latter is given by

Fex@r#5E drE dV̂r~r ,V̂!
Cex

ref@ r̄~r !#

r̄ ref~r !
E dr 8

3E dV̂8r~r 8,V̂8!Vexc~r 82r ,V̂,V̂8!, ~1!

where r(r ,V̂) is the one-molecule distribution function
Cex

ref( r̄) is the excess free-energy per molecule of a unifo
reference system of parallel hard bodies, andVexc(r 8
2r ,V̂,V̂8) is the excluded volume function~i.e., minus the
Mayer function! of two spherocylinders with centers of ma
at r andr 8 and orientationsV̂ andV̂8. We use the standar
factorizationr(r ,V̂)5r(r ) f (r ,V̂), wheref (r ,V̂) is the nor-
malized orientational distribution function. Here the refe
ence system is taken to be a fluid of parallel hard ellipso
of major and minor diameters i ands' , respectively, with
molecular volume and aspect ratios' /s i equal to those of
the spherocylinders: these conditions uniquely determine
size and shape of the reference ellipsoids. In this case,
scriptions for calculating the two ‘‘weighted densities’’r̄(r )
and r̄ ref(r ) ~the latter being proportional to the lowest-ord
component of the former! in terms of the actual number den
sity r(r ) are given in Ref.@13#. In a planar geometry
ol
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r
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o

m
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r(r ,V̂)5r(z,V̂) depends only on the spatial coordinatez
normal to the interface, so that the interfacial tension fu
tional g ~i.e., excess grand potential per area over that of
coexisting bulk fluids! reads

bg@r#5E
2`

`

dzH r~z!F logr~z!212Srot~z!2bm

1
bCex

ref@ r̄~z!#

r̄ ref~z!
E

2`

`

dz8r~z8!Veff~z,z8;@ f # !G1bpJ ,

~2!

whereb5(kT)21. HereSrot is the local rotational entropy
defined in Eq.~26! in Ref. @13#, m the bulk chemical poten-
tial, and p the bulk pressure. The functionVeff is a double
angular average, weighted by the functionf, of the excluded
area between two spherocylinders at heightsz and z8 ~see
following section!.

In the limit of vanishing number density, the rati
bCex

ref( r̄)/ r̄ ref→1/2 @15#. In this limit, the functionals in Eqs.
~1! and ~2! become equivalent to those of the Onsag
second-virial approximation@1–3,5,6#. Therefore, on replac-
ing that density-dependent prefactor by 1/2, the numer
calculations of the present theory can be trivially modified
reproduce results of the Onsager theory.

As in Ref.@13#, here we parametrize the orientational d
tribution function as
f ~z,V̂!5
exp@L1~z!P2~cosu!1L2~z!sin 2u cosf1L3~z!sin2u cos 2f#

E dV̂ exp@L1~z!P2~cosu!1L2~z!sin 2u cosf1L3~z!sin2u cos 2f#

, ~3!
to-

m
n-

tic
h a

ers,
whereu andf are the polar and azimuthal angles of a m
ecule with respect to the space-fixed Cartesian axes,
P2(x) is the second-order Legendre polynomial. Due to
dependence on the anglef, this parametrization allows fo
the possibility of biaxial interfacial states@16,17#, and is
equivalent to an expansion of lnf (z,V̂) up to second-rank
spherical harmonics@1,2#. The parametric functionsL i(z)
can be considered as effective one-body external potent
Consistent with the last equation, the orientational order
the fluid is described by the following three order para
eters, which are the projections off (z,V̂) in the second-rank
spherical harmonic subspace and which are uniquely rel
to the functionsL i(z):

h~z!5E dV̂P2~cosu! f ~z,V̂!, ~4!

s~z!5E dV̂sin2u cos 2f f ~z,V̂!,
-
nd
e

ls.
f

-

ed

n~z!5E dV̂ sin 2u cosf f ~z,V̂!.

As in Ref. @13#, one could adopt these order parameters
gether with the number densityr(z) as the variational func-
tions of the theory. However, it proves more convenient fro
a computational point of view to use a different set of orie
tational order parametershp(z),sp(z), referred to a local
principal-axis reference frame defined by the local nema
director. The two reference frames are connected throug
rotation from thez axis by an anglec(z), the localtilt angle.
The relation between both sets of order paramet
$h(z),s(z),n(z)% and$hp(z),sp(z),c(z)% is @18#

h~z!5hp~z!P2@cosc~z!#1
3

4
sp~z!sin2c~z!, ~5!

s~z!5hp~z!sin2c~z!1
1

2
sp~z!@11cos2c~z!#,
8-2
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n~z!5Fhp~z!2
1

2
sp~z!Gsin 2c~z!.

Use of the principal-axis order parameters simplifies the
culation of the orientational entropy@13#, since the latter is
rotationally invariant and, therefore, does not depend on
tilt angle c(z). As indicated in the following section, th
principal-axis order parameters are also more convenien
accounting for the boundary conditions on the orientatio
order in the bulk nematic phase. This approach requires
verting Eqs.~4! to determine the functionsL i(z) in terms of
h(z), s(z), andn(z), and, in turn, in terms of the principal
axis order parametershp(z), sp(z) andc(z) using the trans-
formation formulas~5!. This inversion is done beforehan
and the results stored in a large table. An alternative
equivalent approach would be to use theL i ’s as independen
variables, and perform the free-energy minimization with
spect to these variables.

III. SOME TECHNICAL CONSIDERATIONS

A. Evaluation of the effective potentialVeff

The functionVeff is given by

Veff~z,z8;@ f # !5E dV̂E dV̂8 f ~z,V̂! f ~z8,V̂8!

3E dR8Vexc~r 82r ,V̂,V̂8!, ~6!

whereR85(x82x,y82y) is the displacement vector norm
to thez axis and translational symmetry with respect to t
vector has been invoked. Insofar as the approximate re
sentation forf (z,V̂) in Eq. ~3! is employed, and in view of
Eqs. ~4!, we can express Veff(z,z8;@ f #)5Veff„z8
2z;h(z),s(z),n(z);h(z8),s(z8),n(z8)…, where the orienta-
tional order at heightsz and z8 is indicated by the corre
sponding order parameters. Note that the solid angles in
~6! are necessarily referred to the space fixed rather t
director reference frame. Since we do not know how to c
culate Veff analytically and the tabulation of this functio
appears to be out of the question, the following approxim
tion was used in previous work@13#:
02170
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Veff„z82z;h~z!,s~z!,n~z!;h~z8!,s~z8!,n~z8!…

'VeffS z8z;
h~z!1h~z8!

2
,
s~z!1s~z8!

2
,
n~z!1n~z8!

2
;

h~z!1h~z8!

2
,
s~z!1s~z8!

2
,
n~z!1n~z8!

2
. ~7!

Subject to the truncated representation in Eq.~3!, this ap-
proximation is exact in the bulk nematic phase and v
good in the bulk smectic phase, where the spatial variatio
the orientational order parameters is very weak. Also, it
lows for a dramatic simplication of the calculations since t
values of the effective potential can be tabulated, for e
value of z82z, as a three-entry table. This strategy h
proved to be rather fruitful in our previous works@13,19#.
Our original hope was that the same approximation wo
also be adequate in the case of the smoothly vary
nematic-isotropic interface. However, it turns out that t
approximation generates an instability that creates den
oscillations at the interface, which was not expecteda priori.

The alternative approach considered here is to evalu
the effective potential exactly@subject to the representatio
Eq. ~3!#, with no intervening approximation. Specifically, w
calculate the integral

Veff~z82z;@ f # !5E
0

p

du sinuE
0

2p

dfE
0

p

du8sinu8E
0

2p

df8

3 f ~z,u,f! f ~z8,u8,f8!

3E dR8Vexc~r 82r ,u,f,u8,f8!. ~8!

Introducing the notation

Vexc~z82z,u,f,u8,f8!5E dR8Vexc~r 82r ,u,f,u8,f8!,

~9!

and using the symmetry properties of the excluded volum
the integral forVeff can be written as
Veff~z82z;@ f # !5E
0

p/2

du sinuE
0

2p

dfE
0

p/2

du8sinu8

3E
0

2p

df8$@ f ~z,u,f! f ~z8,u8,f8!1 f ~z,p2u,f! f ~z8,p2u8,f8!#Vexc~z82z,u,f,u8,f8!

3@ f ~z,u,f! f ~z8,p2u8,f8!1 f ~z,p2u,f! f ~z8,u8,f8!#Vexc~z82z,u,f,p2u8,f8!%. ~10!
8-3
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The kernels

Vexc~z82z,u,f,u8,f8!, Vexc~z82z,u,f,p2u8,f8!

are computed and tabulated prior to the minimization of
functional. As in previous work@13#, the z dependence o
these kernels is handled via the Fourier expansions

Vexc~z,u,f,u8,f8!5 (
n52`

`

Vn
(1)~u,f,u8,f8!eiknz,

Vexc~z,u,f,p2u8,f8!5 (
n52`

`

Vn
(2)~u,f,p2u8,f8!eiknz,

~11!

with kn5np/(L1D), so that the quantities that are actua
tabulated are the Fourier componentsVn(u,f,u8,f8) and
Vn(u,f,p2u8,f8). Note that in the above expansions t
coefficients have the propertyV2n

( i ) 5Vn
( i ) , so that the result-

ing expansions are real and involve sums of cosine functio
In practice the expansions are truncated beyondn.N for
some value ofN.

Calculations using the present procedure are more t
consuming than in Ref.@13# but remain within reasonabl
limits. All numerical integrations, including those for obtai
ing the Fourier components, are performed using Gaus
quadrature, usually involving 12 roots for each variable
integration, though selected calculations have been done
ing 20 roots. The number of Fourier components used
N515, with selected checks made usingN521.

B. Minimization of the functional

Minimization of the interfacial-tension functional Eq.~2!
is performed as usual by first discretizing thez axis so that
bg becomes a function of a large number of variabl
namely, the values of all the order parameters at the m
points: r i ,hp,i ,sp,i ,c i . Typically, the number of mesh
points used is 300 and the corresponding spatial step le
is Dz/L50.05. The ensuing multidimensional minimizatio
is performed using a conjugate-gradient method.

One of the desired results of this study is the value of
equilibrium tilt anglecb in the bulk nematic phase, i.e., th
angle between the bulk nematic director and thez axis nor-
mal to the interface. We take the bulk nematic phase to
approached asz→` ~in practice, outside of a finite ‘‘numeri
cal box’’!. In this limit, the principal-axis order-paramete
approach

hp~z→`!5hb ,

sp~z→`!50, ~12!

c~z→`!5cb ,

where hb is the bulk nematic order parameter measur
mean molecular orientations relative to the director axis. O
expects thatcb is actually determined by the interaction
near the interface, but its value is not knowna priori. In
particular, we do not knowa priori how the molecular axes
02170
e

s.

e

an
f
s-
s

,
sh

th

e

e

g
e

will on average orient near the interface. Therefore, the b
tilt angle cb should be included as a variable in the minim
zation process, a procedure which we callfull minimization,
but which is technically nontrivial to carry out due to the fa
that cb enters as a boundary condition and hence is o
different nature from the other variational parameters.
practice, we can proceed byfixing cb , performing a minimi-
zation over the local variablesr(z),hp(z),sp(z), andc(z),
and then scanning over different values ofcb so as to locate
that value which yields the minimum interfacial tensiong,
corresponding to the equilibrium structure at the interface
similar method has been used in previous studies us
density-functional theory for various ‘‘Maier-Saupe-type
liquid-crystal models@20,21#, and will be called thepartial
minimizationmethod. Complications of this approach ari
due to the fact that, although the bulk tilt angle is fixed
each minimization step, all the local order parameters in
model are allowed to vary inside the numerical box. In p
ticular, the local tilt anglec(z) may fluctuate and its profile
may be nonmonotonic, exhibiting so-called ‘‘subsurface d
formation’’ ~as found, e.g., in Ref.@21#!. We have indeed
observed such an effect here, namely, that when the bulk
anglecb is fixed at values different from 90°, the local ti
angle does not remain uniform and instead varies withz in
order to satisfy the energetically favorable orientation at
interface~which tends to be 90°), even at the cost of se
ously distorting the tilt-angle profile in the box between t
interface and the bulk nematic phase. In fact, for bulk
anglescb near 0°, this frustration effect appears to preve
us from obtaining convergent numerical solutions by the p
tial minimization method.

In practice, we have proceeded by two slightly differe
methods based on fixing the bulk tilt angle at each minim
zation step and assuming thatcb is a ‘‘slow variable,’’ i.e.,
would change slowly compared with the local order para
eters during afull minimizationprocess@20#. In the first ap-
proach, called thefirst constraint minimization, we let the
conjugate-gradient minimization run for a few iteratio
only, typically 10, and thereby obtain aconstraint plot of
interfacial tension versus bulk tilt angle, from which th
equilibrium configuration is deduced. The second approa
called thesecond constraint minimization, differs from the
first in that the local tilt angle is not allowed to fluctuate,
that the tilt-angle profilec(z) is constrained to be constan
across the box and equal to the bulk valuecb . Again, a plot
of interfacial tension versuscb allows us to deduce the equ
librium configuration of the interface. These two methods
not rigorous. However, since we are reasonably confid
that distorted tilt-angle profiles do not occur at equilibrium
the present model, we have mainly adopted thesecond con-
straint minimizationmethod and have occasionally imple
mented the first method as a check.

IV. RESULTS

The theory outlined above is now applied to the nema
isotropic interface of hard spherocylinders. In fact, the act
results presented below are obtained using a simplifica
whereby the weighted densityr̄(z) is replaced by the true
8-4
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local densityr(z). This is called the ‘‘extended Onsage
theory,’’ and is equivalent to a direct extension of t
Parsons-Lee@11,12# theory for bulk nematics. This replace
ment is justified by the expected smoothness of the nem
isotropic interface and considerably simplifies the numer
analysis: preliminary studies using the full theory indica
that its results differ negligibly from those of the extend
Onsager theory.

Figure 1 plots the density and orientational ord
parameter profiles for spherocylinders of length-to-diame
ratio L/D55, as obtained from the extended Onsager the
using the second constraint minimization method, for val
of the bulk tilt anglecb50°,20°,60°, and 90°. Figure 1
shows thathp(z) is always monotonic, whereas the dens
r(z) is nonmonotonic for small tilt angles~i.e., for bulk di-
rector orientations nearly perpendicular to the interface!, ex-
hibiting a minimum on the isotropic side of the interfac
This represents a slight molecular depletion, an effect wh
disappears ascb→90°, i.e., as the bulk director approaches
planar orientation. This feature of the density was found e
lier by Chen and Noolandi@22# using the Onsager theory fo
spherocylinders withL/D→`, and more recently by van
Roij et al. @6# using the Onsager theory for a discret
orientation model, as well as by McDonaldet al. @3# in stud-
ies by Onsager theory and computer simulations of hard
soft ellipsoids. Figure 1 also shows that the location of
density interface, as inferred, say, from the position of
inflection point inr(z), is shifted toward the bulk nemati
phase with respect to the location of the interface indica
by the profile ofhp(z). This is also in agreement with pre
vious findings@1–3#.

The biaxial order parametersp(z) in Fig. 1 is also non-
monotonic, exhibiting a pronounced minimum on the isot
pic side of the interface whose amplitude increases~as is
expected! with increasing tilt anglecb . Again, these feature
are in qualitative agreement with previous studies by b
theory and simulation@2,5,6,23#. The fact thatsp(z) in Fig.
1 is not exactly zero whencb50 is an artifact due to impre

FIG. 1. Density and order-parameter profiles obtained from
extended Onsager theory with the second constraint method, fo
caseL/D55 and for different bulk tilt angles~indicated on the
graphs!.
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cision in the angular integrations involved in calculating t
effective potential.

Figure 2 shows the behavior of the interfacial tension
L/D55 as a function of the bulk tilt anglecb , as obtained
~a! from the extended Onsager approximation using the
minimization techniques and~b! from the Onsager approxi
mation with the second constraint method. The data from
two minimization techniques for the extended Onsa
theory are numerically similar. This supports the idea beh
the first minimization method, where the conjugate-gradi
process is carried out for only ten iterations, namely, that
bulk tilt angle is indeed a slow variable and thefast vari-
ables, i.e., density and principal-axis order parameters,
idly accommodate to quasiequilibrium values. Both metho
agree that the equilibrium director orientation is parallel
the interface. In the casecb590°, calculations using the
second constraint minimization method are equivalent t
full minimization of the free-energy functional with respe
to all local variables, since in this case the local tilt-ang
profile c(z) is found to be constant. The Onsager theory a
predicts a minimum in the interfacial tension for a plan
director orientation. However, it is seen that the latter the
also exhibits a second minimum with slightly greater dep
around a tilt angle;30°. We have checked that this findin
is not a consequence of numerical inaccuracies, by perfo
ing calculations on the Onsager theory using Gauss
quadratures with 20 roots instead of the 12 roots used
other calculations. These more accurate results are sh
downward by an essentially constant amount ('1%) from
those obtained with 12 roots, indicating that the numeri
inaccuracies are nearly independent of tilt angle. Hence
conclude that the minimum near 30° is a real feature of

e
he

FIG. 2. Interfacial tension vs tilt angle for the caseL/D55: ~a!
results obtained from the extended Onsager approximation u
partial minimization with the first constraint method, including on
ten iterations~open circles! and from the second constraint metho
~filled squares!; ~b! Onsager theory.
8-5
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Onsager theory. This is consistent with the fact that the O
sager theory is not expected to be accurate for such s
elongations, and also the fact that such a feature has not
observed in any earlier studies, which have focused on m
larger elongations~the minimum aspect ratio considered
computer simulations of ellipsoids by Allen and co-worke
is 15 @1–4#!. For this reason, we have also applied both
Onsager and extended Onsager theories to the casesL/D
510 and 20.

Figure 3 plots the interfacial tension of both theories a
function of cb ~second constraint method! for L/D510. In
this case, apart from an overall difference in magnitudes,
two theories yield similar behavior ofg, exhibiting a single
minimum atcb590°. The values of the interfacial tension
cb590° according to the two theories, for the three elon
tions considered here, are listed in Table I along with
reduced number densities of the coexisting isotropic
nematic phases, denotedr iso and rnem, respectively. These
densities are also compared with Monte Carlo values@24#. It
is seen that the densities predicted by the extended Ons
theory agree with the Monte Carlo results to within 2.5%
the isotropic phase and to within 4.7% in the nematic pha

FIG. 3. Interfacial tension vs tilt angle for the caseL/D510.
Solid circles and triangles indicate results of the Onsager and
tended Onsager approximations, respectively.

TABLE I. Comparison of theoretical predictions for the bu
densitiesr iso and rnem of the coexisting isotropic and nemat
phases, and for the reduced interfacial tensiong* ~at bulk tilt angle
90°), for the three elongations considered in this work. The O
sager and extended Onsager approximations are denoted ‘‘Ons
‘‘Ext,’’ respectively, while ‘‘MC’’ refers to Monte Carlo data@24#
for the coexisting bulk densities. Values of the latter densities in
cated by* are estimates obtained from figures in Ref.@24#.

L/D Theory r isoLD2 rnemLD2 g*

Ons 0.8753 0.9442 0.1230
5 Ext 0.4491 0.4686 0.0634

MC 0.447 0.447

Ons 0.4340 0.4821 0.1200
10 Ext 0.2992 0.3290 0.0877

MC 0.292* 0.320*

Ons 0.2145 0.2516 0.1350
20 Ext 0.1759 0.2017 0.1139

MC 0.172 0.211
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As in the figures, the interfacial tensions in Table I are e
pressed in the reduced unitg* [bg(L1D)D, in order to
compare with previous calculations based on the Onsa
theory in the limitL/D→`. The most recent analysis give
g* 50.15660.001 forL/D→` @5#. As seen in Table I, our
value forg* according to the Onsager theory forL/D520 is
still somewhat below this asymptotic limit. Of more signifi
cance, the extended Onsager theory yields systematic
lower values ofg than the Onsager theory, although the g
decreases with increasingL/D. This is consistent with evi-
dence that Monte Carlo simulations produce slightly low
values of g than the Onsager theory in the case of ha
ellipsoids with length/width ratio of 15@3#. From Table I, for
each value ofL/D, the relative difference between the O
sager and extended Onsager values ofg is roughly equal to
the relative difference between the corresponding value
the mean density (r iso1rnem)/2.

V. CONCLUSIONS

We have examined the structure and free energy of
nematic-isotropic interface of a hard-spherocylinder fluid
molecular length/diameter ratios betweenL/D55 and 20.
The study employs a simplified version of the Somoz
Tarazona @10# density-functional theory, which approxi
mately extends Onsager’s classical second-virial theory
arbitrary elongation and density. Qualitatively, most of o
results are in agreement with those obtained in earlier stu
applying either Onsager theory or computer simulations
hard-rod models with significantly greater elongati
@1–3,5–7,22,23#. In particular, the profile of the biaxial ori
entational order parametersp(z), theweaknonmonotonicity
exhibited by the density profiler(z) for small tilt anglescb ,
and the minimum in the interfacial tension atcb590°, are
all consistent with previous studies. We have also shown
the Onsager theory predicts spurious minima in the inte
cial tension at small tilt angles for elongationsL/D;5. A
priori , however, one should not expect the latter theory to
valid in this range of elongations. Our calculations indica
that the present theory yields smaller values of the interfa
tension than the Onsager theory for any finite ratioL/D.

An aspect dwelt upon in this paper is the theoretical
termination of the ‘‘anchoring angle,’’ i.e., the value of th
equilibrium tilt anglecb in the bulk nematic phase. We hav
discussed several numerical approaches for finding
angle, all of which concur thatcb590°, corresponding to
planar alignment of the bulk nematic director. We shou
emphasize, however, that the methods described here
consistent with the finding that theequilibrium director
structure of the spherocylinder model is characterized b
constant tilt-angle profilec(z)5cb . For other possible
models@20,21,25#, our methods do not rule out the occu
rence of equilibrium structures exhibiting local deformatio
of the director while respecting the boundary conditions
the bulk nematic phase.

To our knowledge, no computer-simulation studies of t
nematic-isotropic interface of hard spherocylinders in
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range of elongations considered here are available for c
parison. Such studies are now being performed by our gr
and will be described in future work. Recent experime
have measured the interfacial tension of aqueous suspen
of cellulose crystallites characterized byeffective length/
diameter ratios comparable to those considered here@14#.
However, as the analysis in Ref.@14# indicates, comparison
of the experimental results with ‘‘hard-rod’’ models remai
02170
-
p

s
ons

problematic due to unresolved effects of electrostatic in
actions and polydispersity in particle dimensions.
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